


Lecture overview

o Case study II: VGG

o Vanishing and exploding gradients

o Case study III: Inception

o Case study IV: Resnet, Denset, Highway Net
o Depth and trainability

o Specialized architectures
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Case study II: VGG16
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https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Characteristics

o Inputsize: 224 X 224
o Filter sizes: 3 X 3

o Convolution stride: 1
> Spatial resolution preserved

o Padding: 1
o Max pooling: 2 X 2 with a stride of 2
o ReLU activations

o No fancy input normalizations
> No Local Response Normalizations

o Although deeper, number of weights is not exploding
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Effective receptive field

o The number of actual pixels contributing at the activation in [-th layer
> Not just the ones from the previous layers, but the others before that too

o Alarge filter can be replaced by a deeper stack of successive smaller filters
- Two 3 X 3 filters have the receptive field of one 5 X 5

- Three 3 X 3 filters have the receptive field of one 7 X 7

o Depth increases effective receptive field
> Every “pixel” in the 2" layer corresponds to a 3x3 region in the previous one

~
~

Picture credit: Arden Dertat

5x5 receptive field 3x3 receptive field
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https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Why 3x3 filters?

o The smallest possible filter to captures the “up”, “down”, “left”, “right”

o Deeper stacks of smaller filters likely more powerful than single large filter
- Three more nonlinearities for the same “size” of pattern learning

- Fewer parameters and regularization

A stacks of two small filters: (3 X3 X C) X3 =27-C
One large filter: 7 X 7 X Cx1=49-C

~
~

Picture credit: Arden Dertat

5x5 receptive field 3x3 receptive field

L:(’:J UNIVERSITY OF AMSTERDAM EFSTRATIOS GAVVES - UVA DEEP LEARNING COURSE - 6 VISLab


https://towardsdatascience.com/applied-deep-learning-part-4-convolutional-neural-networks-584bc134c1e2

Even smaller filters?

o Also 1x1 filters are used
o Followed by a nonlinearity

o Increasing nonlinearities without affecting receptive field sizes
° Linear transformation of the input channels

1
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Feature map
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ITraining

o Batch size: 256

o SGD with momentum (y =0.9)

o Weight decay A =5-107*

o Dropout on first two fully connected layers

o Starting learning rate ny, = 1072
> Divided by 10 when validation accuracy stops improving

> 3X decreasing learning rate

o Smaller filters — Faster training

o Reported depth as potential regularizer
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